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In many solar applications the viscosity appears to be more important

than resistivity and the observations show clearly that in some cases

the fluid velocity is comparable to the local Alfv_n velocity.

Equilibrium flows and viscosity can considerably change the propert-
1-5

ies of resistive instabilities.

In this paper it is shown that both the growth rate of the instabili-

ty and the spatial profile of the mode strongly depend on few relev-

ant parameters, namely the ratio r between the magnetic (a B) and the

velocity (a v) scale lenghts, the ratio V between the fluid (Vo)

and the Alfv_n (vA) velocities and the ratio M between the Lund-

quist (S) and the Reynolds (R) numbers.

In order to discuss these instabilities in solar conditions, let us

consider an idealized configuration in which the plasma is flowing in

the z-direction along the magnetic field B ° with a velocity v o-

Both B and v vary in the x-direction. In order to take into
o o

account the shear of the magnetic field possibly induced by photo-

spheric motions, we will consider B ° _ tgh x/aB, so that resisti-

vity carl be important in a layer around x = 0.

As far as the velocity is concerned we will discuss two different

velocity profiles, with different hydrodynamic stability properties.

• _ tgh x/a +iEa. a): v ° v stable against Kelvin-Helmholtz

instability

Eq. b) : v O _ sech x/a v unstable against Kelvin-Helmholtz

instability.

Assuming the perturbations to behave as % exp [i(kz+w t)], the
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linear stability analysis of the above configurations shows that the

4,5
relevant parameters are

, a v T T
B o R

_ = ka B.
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The resistive time T R and the viscous time
2 2
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T -- T -
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T._ are
defined as:

c is the speed of light, o the electrical conductivity.

n. T.

3 l 1

nl - 10 2
W .T,

Cl 1

is the perpendicular viscous coefficient, using the same notations as

Braginskii (1965). It can be shown that _i' which is the smallest

of the coefficients appearing in the stress tensor, is the only one

6
important in this calculation.

The results can be summarized as follows:

i) The frequency _ = _R + iy

_ _ kv(o).
R

of the mode is complex and

2) There exists a transition from a behaviour similar to the static

tearing mode to a behaviour similar to a Kelvin-Helmholtz mode.

This transition occurs when _ r V _V I/3= ; here s is a measure

of the relative importance of the velocity gradients with respect

to the magnetic gradients When s > V I/3• , we find a stabiliza-

tion for Equilibrium a and a rapid increase of the growth rate

for Equilibrium b. This difference is due to the different

stability properties against K.-H. modes of the two configura-

tions.

3) It is well known that the viscosity stabilizes the static tearing

mode. In presence of flows this is still true only when E << 1
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or S/R < I. Otherwise we have to distinguish between Equili-

brium a) and b).

Equilibrium a) with _ _ V I/3 and S/R > i:

The growth rate of the mode increases with the viscosity and

presents a maximum value for R _ 20 which is independent of the

resistivity. For R > 20 the viscosity again stabilizes the

mode.

Equilibrium b) with c > V I/3..

The viscosity is important and represents a stabilization factor

only when R_ I.

4) In all cases there is a non-zero x-component of the magnetic

field perturbation at x = 0 and therefore all these modes are

reconnecting modes. The level of reconnection is a function of

the growth rate of the mode, being bigger for slowly growing

instabilities.

5) When c > V I/3
, in all cases the perturbations are not localiz-

ed close to the resistive layer as in the static tearing mode,

and therefore the typical scale length of the mode is a B and

not the width 6 of the resistive layer as in the static case.

It is clear that the effects of the instability on the equilibrium

configuration can be studied only through a non-linear analysis.

Depending on the values of the relevant parameters the non-linear
8

evolution of the instability can be very different. These exist

situations (Eq. (b), _ > V IZ3, _ _i) in which the instability can

trigger a turbolent cascade with a consequent important dissipation

of both the equilibrium magnetic and kinetic energies. In these

cases the instability is similar to a Kelvin-Helmholtz instability

with growth time few per cent of the Alfv_n time and a small level of

reconnection. There are other situations (Eq.(a), c _V I/3, _ < 0.1)
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in which the instability does not produce a strong turbulence and a

little amount of energy is involved, but it is easy to accelerate

particles through the associated parallel (to B) electric field. In

these cases the instability is similar to a resistive instability

with growth time Slower than in the previous case but with important

effects due to the viscosity.
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